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In this paper normal liquid helium-3 is studied for the first time within the framework of
the so-calledstatic fluctuation approximation. This is based on the replacement of the
squareof the local-field operator with its mean value. A closed set of nonlinear integral
equations is derived for neutral many-fermionic systems. This set is solved numeri-
cally by an iteration method for a realistic interhelium potential. The thermodynamic
properties are then obtained for normal liquid helium-3. The quadratic-fluctuation ap-
proximation is found to be valid for this system in the low-temperature limit (≤0.25 K).
Our results are presented in a set of figures. The role of the interaction is emphasized,
and the functional dependence on the temperature of key thermodynamic quantities is
derived for normal liquid helium-3.
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1. INTRODUCTION

This paper is concerned with calculating from first principles the thermo-
dynamic properties ofnormal liquid helium-3, which is the archetype strongly-
interacting neutral many-fermionic system.

Since the early 1970s, it has been the obviously more excitingsuperfluid—
rather thannormal—liquid 3He that has attracted attention more. However, normal
liquid 3He remains an interesting quantum fluid in its own right (Wilks, 1967).

Many microscopic techniques have been used over the years to study this
system. These techniques can be classified into two broad types: The first type
is perturbative (Bishopet al., 1976; Burkhardt, 1968; Ghassib, 1974; Ghassib
et al., 1974, 1976; Mishra and Sreeram, 2000; Østgaard, 1968). The second type is
variational, especially the correlated-basis-functions framework (Campbellet al.,
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1984; Feenberg, 1969). The aim of microscopic theory is, of course, to justify and
explain phenomenological theory—Landau’s (Pines and Nozi´eres, 1966).

Here we shall apply for the first time in this context the so-called static
fluctuation approximation (SFA). The SFA has already been used to study vari-
ous systems—including the classical two-dimensional Ising model (Nigmatullin
et al., 2000a); the proton model of ferroelectrics with tunneling (Nigmatullinet al.,
2000b); the one-, two-, and three-dimensional Ising model (Nigmatullinet al.,
2000c); and liquid helium-4 (Al-Sugheiret al., 2001). Avoiding, as it does, Green’s
functions (Girish and Yia-Chung, 1998) and the highly-involved diagrammatic
techniques, this approach is relatively simple compared to other conventional
many-body approaches.

The underlying key physical idea is to substitute the square of the quadratic
fluctuation operator with its mean value. The physical implication is that the
true quantum-mechanical spectrum of this operator is replaced with a distribu-
tion around the expectation value of the local-field operator (Al-Sugheiret al.,
2001; Nigmatullinet al., 2000a,b,c; Nigmatullin and Toboev, 1989).

We shall invoke this approximation to calculate the thermodynamic properties
of normal liquid helium-3. To this end, it is necessary to obtain the so-called self-
consistentlong-range equation.

In this paper, we shall consider an extended uniform normal liquid helium-3
system of N3He atoms, each of massm, occupying a volumeÄ. This volume is
large enough for the surface effects to be neglected, and each atom is characterized
by its linear momentumEk and spinλ = ±1/2. The translational invariance im-
plies that the single-particle wavefunctions are plane waves (Fetter and Walecka,
1971). The chemical potential for liquid3He (|µ| = 2.52 K/atom) is smaller than
the electronic excitation energies. The minimum ionization energy for3He atom
≈24.58 eV, where l eV= 1.1605× 104 K. Hence, the excited states of the atoms
need not appear explicitly in our theoretical description of our system; in this sense,
these atoms are the elementary particles of our system. Superfluid3He is beyond
the scope of this paper; to study critical phenomenon in this system we need orders
of fluctuations higher than the quadratic order.

The synopsis of the rest of this paper is as follows. In Section 2 the closed
set of nonlinear integral equations central to the present theoretical framework is
derived for a neutral Fermi system. Section 3 is devoted to the calculations and
numerics. Section 4 summarizes the results for normal liquid helium-3. Finally, in
Section 5, the paper closes with some concluding remarks.

2. CLOSED SET OF NONLINEAR INTEGRAL EQUATIONS
FOR A NEUTRAL FERMI SYSTEM

The total Hamiltonian describing a neutral many-fermionic system can
be written as a linear combination of the local-field operatorÊkλ and the
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number-of-particles operator (Al-Sugheiret al., 2001):

Ĥ =
∑
Ekλ

Êkλâ
+
kλâkλ, (1)

the indiceskλ denoting the complete set of quantum numbers describing a specific
state.

The equation of motion of an operatorâ+kλ(τ ) in the Heisenberg representation
can be written in the form

dâ+kλ
dτ
= (Ĥ , â+kλ), (2)

whereτ ≡ it. According to the well-known anticommutation relations for a Fermi
system (

âkλ, â+qλ1

)
+ = δkqδλλ1;

(
âkλ, âqλ1

)
+ = 0. (3)

Assuming that the local-field operatorÊkλ is hermitian and that it commutes with
creation and annihilation operators, we can write

dâ+kλ
dτ
= (Ĥ , â+kλ)− = Êkλâ

+
kλ. (4)

The total Hamiltonian describing the neutral many-fermionic system can be
written as

Ĥ =
∫

dEr 9̂+(Er )

(
− h2

2m
∇2

)
9̂(Er )

+ 1

2

∫ ∫
dEr1 dEr29̂

+(Er1)9̂+(Er2)V(Er1− Er2)9̂(Er2)9̂(Er1). (5)

Here9̂(Er ) and9̂+(Er ) are the field operators,h is Planck’s constant (h ≡ h/2π ≡
Dirac’s constant),m is the femionic mass, andV(Er1− Er2) is the pairwise central
potential that depends only on the modulus of|Er1− Er2|.

It is convenient to write the field operators as linear combinations of the
creation and annihilation operators:

9̂(Er ) =
∑
Ekλ
ψEkλ(Er )âEkλ; (6)

9̂+(Er ) =
∑
Ekλ
ψ+Ekλ(Er )â+Ekλ, (7)

where the coefficientsψEkλ(Er ), ψ+Ekλ(Er ) are the single-particle wavefunctions and the
sum is over the complete set of single-particle quantum numbers. In particular, the
index Ek denotes the linear momentum of the particle and the indexλ represents
the spin of the particle.
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In a uniform infinite system all physical properties must, of course, be invari-
ant under spatial translations. This suggests that the single-particle wavefunctions
are plane waves:

ψEkλ(Er ) = 1√
Ä

exp(i Ek · Er )ηλ, (8)

whereÄ is the normalization volume of the system andηλ are the two spin wave-
functions.

Integration over the spatial coordinates of (5) gives the Hamiltonian in the
second-quantization representation:

Ĥ =
∑
Ekλ

h2k2

2m
â+kλâkλ + 1

2Ä

∑
EkEqEp,λλ1

V(k)â+p−kλâpλâ
+
qλ1

âq−kλ1, (9)

V(k) being the Fourier transform of the pair potential defined as

V(k) =
∫

V(r ) exp(i Ek · Er ) dEr . (10)

The grand canonical Hamiltonian of this system is

Ĥ =
∑
Ekλ
ε(k)â+kλâkλ + 1

2Ä

∑
EkEqEp,λλ1

V(k)â+p−kλâpλâ
+
qλ1

âq−kλ1, (11)

whereε(k) ≡ (h2k2/2m)− µ, µ being the chemical potential.
From (4) and (9) we find that

Êkλ = [âkλ, (Ĥ , â+kλ)−]+ = ε(k)+ 1

Ä

∑
Eqλ1

[
V(0)− V(Eq − Ek)δλ1λ

]
â+qλ1

âqλ1.

(12)

From this equation we find that the local-field operator is spin independent:Êkλ1 =
Êkλ2 = Êk. This is reasonable since the interaction potentialV(Er1− Er2) is spin in-
dependent, and so is the particles distribution operator:n̂qλ1= â+qλ1

âqλ1= â+qλ2
âqλ2.

The local-field operator in the ground state is

Ê0 = 1

Ä

∑
Eqλ1

[
V(0)− V(Eq)δλλ1

]
â+qλ1

âqλ1. (13)

The excitation local-field operator, as measured relative toÊ0, is

ÊEk ≡ ÊEk − Ê0 = ε(k)+ 1

Ä

[∑
Eq

W(Ek, Eq)n̂q

]
, (14)
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and the corresponding mean value is

〈ÊEk〉 = ε(k)+ 1

Ä

[∑
Eq

W(Ek, Eq)〈n̂q〉
]

, (15)

where

W(Ek, Eq) ≡ V(Eq)− V(Ek− Eq), and n̂qλ ≡ n̂q = â+qλâqλ.

In the SFA the square of the quadratic fluctuation operator is replaced with
its mean value:

(1Êk)2 ∼= 〈(1Êk)2〉. (16)

1Êk ≡ Êk − 〈Êk〉 is the corresponding deviation of the mean-field operator from
its mean value. It follows that the local-field deviation operator has two symmetric
eigenvalues:

(1Êk)2 ∼= 〈(1Êk)2〉 = ϕ2
k , (17)

which, in fact, defines a splitting of the operator1Êk produced by the quadratic
fluctuations.

To obtain the desired closed system of nonlinear integral equations, it is
necessary to find the creation operator in terms of the local-field operator. The
general solution of (4) is

â+kλ(τ ) = â+kλ exp(Êkτ ) = â+kλ exp[(〈Êk〉 +1Êk)τ ]. (18)

It is more convenient to rewrite (18) as linear in terms of the fluctuations of the
local-field operator; this could be done with the aid of the identity:

B(a+ b1Êk) ≡ η0(k)+ η1(k)1Êk, (19)

where

η0(k) ≡ 1

2
[B(a+ bϕk)+ B(a− bϕk)]; (20a)

η1(k) ≡ 1

2ϕk
[B(a+ bϕk)− B(a− bϕk)]. (20b)

According to this identity we can write (18) in the final form:

â+kλ(τ ) = â+kλ exp(〈Êk〉τ )

[
cosh(ϕkτ )+ 1Êk

ϕk
sinh(ϕkτ )

]
. (21)

From this solution we can obtain the so-calledlong-range equation. To this end,
we use the identity:

〈Ĉ(β)B̂〉 = 〈B̂Ĉ〉 = 1

Q
Tr[exp(−β Ĥ )B̂Ĉ], (22)
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whereQ is the grand partition function of the system. Here and below we shall
replaceτ with β = (1/kBT), kB being Boltzmann’s constant andT the absolute
temperature; this is common in statistical quantum mechanics (Feynman, 1972;
Kadanoff and Baym, 1962).

Assuming that̂C(β) = â+kλ(β) and B̂ = âkλ Â, we obtain

〈â+kλ(β)âkλ Â〉 = 〈âkλ Ââ+kλ〉. (23)

If the operatorÂ is chosen to commute witĥa+kλ, âkλ, and Êk, (23) can then be
written as

〈â+kλ(β)âkλ Â〉 = 〈âkλ Ââ+kλ〉 = 〈âkλâ
+
kλ Â〉. (24)

From this equation and (21) we obtain

〈Â〉 = 〈n̂k Â〉[exp(β〈Êk〉) cosh(βϕk)+ 1]

+ 〈n̂k1Êk Â〉 exp(β〈Êk〉) sinh(βϕk)

ϕk
. (25)

If, in (25), Â→ 1Êk Â, we obtain the additional equation:

〈1Êk Â〉 = 〈n̂k1Êk Â〉[exp(β〈Êk〉) cosh(βϕk)+ 1]

+ ϕk sinh(βϕk) exp(β〈Êk〉)〈n̂k Â〉. (26)

To obtain the long-range equation,〈n̂k1Êk Â〉 is eliminated from (25) and (26);
so that

〈n̂k Â〉 = η0(k)〈Â〉 + η1(k)〈1Êk Â〉, (27)

where

η0(k) ≡ 1

2

{
1

exp[β(〈Êk〉 + ϕk)] + 1
+ 1

exp[β(〈Êk〉 − ϕk)] + 1

}
; (28a)

η1(k) ≡ 1

2ϕk

{
1

exp[β(〈Êk〉 + ϕk)] + 1
− 1

exp[β(〈Êk〉 − ϕk)] + 1

}
. (28b)

We can now find the closed system of nonlinear integral equations from
the long-range equation (27). First, puttingÂ = 1 in (27), we have the particle
distribution, where the quadratic fluctuations are symmetric,〈1Êk〉 = 0:

〈n̂k〉 = η0(k). (29)

It is more convenient to rewrite the long-range equation (27) in terms of the
fluctuations of the occupation-number operator, this being defined as

n̂k ≡ 〈n̂k〉 −1n̂k, (30)
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where we are have taken the local-field operator asÊk = 〈Êk〉 +1Êk. Therefore,
the occupation-number operator must be defined as in (30); this is because there is
a relative sign between the fluctuations in the number-of-particles operator and the
fluctuations in the local-field operator. So if the fluctuations in the local-field oper-
ator lead to an increase in the state energy, then the fluctuations in the number-of-
particles operator lead to a decrease in the number of particles in this state. In terms
of the fluctuations of the occupation-number operator, the long-range equation is

〈1n̂k Â〉 = −η1(k)〈1Êk Â〉. (31)

Putting Â = 1n̂q in this equation, whereq 6= k, we have the pair correlation
function〈1n̂k1n̂q〉c, the indexc denoting the true correlationsq 6= k:

〈1n̂k1n̂q〉c = −η1(k)〈1Êk1n̂q〉c

= −η1(k)

Ä

∑
Ep

W(Ek, Ep)〈1n̂p1n̂q〉. (32)

The correlation function〈1n̂p1n̂q〉 can be written as

〈1n̂p1n̂q〉 = 〈(1n̂q)2〉δqp+ 〈1n̂p1n̂q〉c. (33)

The value〈(1n̂q)2〉 is determined as

〈(1n̂q)2〉 = 〈n̂2
q

〉− 〈n̂q〉2. (34)

For fermionic systems,̂n2
q = n̂q; so that (34) becomes

〈(1n̂q)2〉 = 〈n̂q〉(1− 〈n̂q〉). (35)

To close our system of nonlinear integral equations, puttingÂ = 1Êk in (31),
we have

−η1(k)ϕ2
k =

1

Ä

∑
Ep

W(Ek, Ep)〈1n̂p1n̂k〉. (36)

The set of nonlinear integral equations (15), (29), (32), (35), and (36) can be solved
numerically to calculate the thermodynamic properties of the system.

3. CALCULATIONS

In the thermodynamic limit the summation in (15), (32), and (36) can be
changed to an integration. After integrating over the solid angle, these equations
reduce to

〈Êk〉 = ε(k)+ 1

2π2

∫ ∞
0

W(k, p)〈n̂p〉p2 dp; (37)
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〈1n̂k1n̂q〉c = −η1(k)

2π2

∫ ∞
0

W(k, p)〈1n̂p1n̂q〉p2 dp; (38)

−η1(k)ϕ2
k =

1

2π2

∫ ∞
0

W(k, p)〈1n̂p1n̂k〉c p2 dp, (39)

whereW(k, p) ≡ V(p, 0)− V(k, p), V(k, p) being the Fourier-Bessel transform
of the potential, defined as

V(k, p) = 4π
∫ ∞

0
V(r )

sin(kr )

kr

sin(pr )

pr
r 2 dr. (40)

The integrand in (37)–(39) is calculated by Gaussian quadrature (Ali, 1997;
Bishopet al., 1977; Ghassibet al., 1976). Our set of nonlinear integral equations
will be solved numerically by an iteration method for a realistic interhelium po-
tential: FDD-1 potential of Frost and Musulin (Bishopet al., 1977; Bruch and
McGee, 1967, 1970) because it retains most of the desirable features of HFDHE2
(Aziz et al., 1979; Janzen and Aziz, 1995), generally regarded as the best He–He
potential available, but is simpler to handle. The Fourier-Bessel transformation
of this potential,V(k, q), is given by Ali (1997). Throughout our calculations a
natural system of units is used, such thath = 1= m, wherem is the3He atomic
mass, the conversion factor beingh2/m= 16.0838 KÅ−1 (Bishopet al., 1977).
The chemical potential of liquid helium-3, which plays a crucial role in calculating
the number-of-particles distribution, must be known as a function of temperature.
To this end we use

µ =
(
∂E

∂N

)
S

, (41)

E being the internal energy of the system andS the entropy of the system. Using
elementary thermodynamics, we may write this equation in the form

µ =
(
∂E

∂N

)
T

− T

(
∂S

∂N

)
T

. (42)

At low temperatures, the second term of (42) is negligible compared to the first
(Pines and Nozi´eres, 1966).

To calculate the thermodynamic properties of the system, we should calculate
the grand partition functionQ. The usual definition is

Q = Tr[exp(−β Ĥ )]

=
∑
n̂p

exp

(
−β

∑
Epλ

Êpn̂p

)

=
∏
p̂λ

∑
n̂p

exp(−β Êpn̂p). (43)
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For Fermi systemsnp = 0 or 1; so that (43) becomes

Q =
∏
pλ

[1+ exp(−β Êp)]. (44)

It is more convenient to take the logarithms of both sides:

ln Q =
∑
Epλ

ln[1+ exp(−β Êp)]. (45)

Using the identity (19), we have

ln Q =
∑
Epλ

[q0(p)+ q1(p)1Êp]. (46)

Taking into account the symmetry of the quadratic fluctuations of the local-field
operator, we get from (46)

ln Q =
∑
Epλ

q0(p),

where

q0(p) = 1

2

[
ln{1+ exp[−β(〈Êp〉 + ϕp)]}
+ ln{1+ exp[−β(〈Êp〉 − ϕp)]}

]
. (47)

The grand mean energy〈Ĥ〉 is defined as

〈Ĥ〉 = −∂ ln Q

∂β
=
∑
Epλ

[〈Êp〉〈n̂p〉 + η1(p)ϕ2
p

]
. (48)

From the grand partition function and the grand mean energy it is simple to
evaluate the other thermodynamic properties.

The usual definition of the pressure is given by (Huang, 1987; Pathria, 1992)

P = kBT
ln Q

Ä
. (49)

The entropy of the system can be evaluated from the first law of thermody-
namics in terms of the grand mean internal energy U and the pressure:

S= 1

T
(U + PÄ). (50)

Finally, the specific heat capacity of the system at constant volume is

Cv =
(
∂U

∂T

)
Ä

. (51)
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4. RESULTS AND DISCUSSION

From numerical calculations we find that our closed system of nonlinear
integral equations is divergent at temperaturesT ≥ 0.25 K; the fluctuations in
the local-field operator increase with temperature. This means that the SFA is
valid for strongly-interacting Fermi systems only at temperatures lower than some
temperature (≈0.25 K for normal liquid helium-3). At higher temperatures and
for more accurate calculations of the long-range equation, higher orders of the
fluctuations must be considered. These orders are presumably also necessary to
handle the superfluid transitions that the system undergoes forT ≤ 2.7 mK. It
seems that this conclusion is generally true for critical phenomena within the
quadraticfluctuation approximation (Nigmatullinet al., 2000c).

The strength of the interaction potential of the system also plays a crucial role
in determining the limits of validity of thequadraticfluctuation approximation (Al-
Sugheiret al., 2001). For dilute systems the validity of the SFA extends to higher

Fig. 1. Distribution of the number of particles in the different states relative
to the lowest state,〈n̂k〉/〈n̂1〉, for the FDD-1 potential at temperaturesT1 =
0.03 K (×), T2 = 0.09 K (+), T3 = 0.15 K (◦), T4 = 0.21 K (4), andT5 =
0.25 K (⊕), versus the relative momentum (k).
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temperatures. The central He–He potential can be expressed in the form

V(r ) = A f (r ), (52)

whereA is a factor determining the strength (amplitude) of the potential andf (r )
is a “shape function” describing the overall shape of the potential (Ghassib, 1984).
When the strength factor equals 1 (A = 1), the shape functionf (r ) becomes the
realistic interhelium potential. In a similar manner to liquid4He (Al-Sugheiret al.,
2001), the fluctuations in the local-field operator at fixed temperature increase
with A. As A increases, more states become occupied; so that the fluctuations in
the local-field operator of state|k〉 increase. Also, the fluctuations in the local-field
operator at fixed strength factor increase with temperature. However, if the fluctu-
ations in the local-field operator of state|k〉 exceed a certain value compared to the
mean value of the local-field operator of the same state, the closed set of nonlinear
integral equations become divergent.

Figure 1 shows the distribution of the number of fermions at different tem-
peratures. As expected, the width of the distribution increases with temperature,
since more states become occupied. This is explained by the increase in the

Fig. 2. The internal grand mean energy per unit volumeU/Ä for normal
liquid helium-3 as a function of temperature (T).
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Fig. 3. The pressure (P) for normal liquid helium-3 as a function of
temperature (T).

fluctuations in the local-field operator as the temperature increases. The fluctu-
ations in the local-field operator of state|k〉 depend on the interaction potential op-
erating between this state and other occupied states through the correlation function
〈1nk1nq〉c.

Figures 2–5 show the numerical calculations of the thermodynamic proper-
ties of normal liquid helium-3. Figure 2 shows the internal grand mean energy per
unit volume up to 0.25 K. Fitting these data, we find thatU ∝ T2.3. Thus, the in-
teraction term leads to an enhanced temperature dependence of the internal grand
mean energy; for ideal systems,U ∝ T2. Figure 3 shows the internal pressure of
the system. The temperature dependence isP ∝ T1.5; whereas for ideal systems,
P ∝ T2. For interacting systems, the particles become more localized compared
to the ideal system; so that the internal pressure becomes less sensitive to the tem-
perature. Figure 4 shows that the specific heat capacity is linear in the temperature
up toT = 0.15 K; thereafter a slow fall occurs as the temperature increases. This
result is consistent with other calculations based on the spin fluctuation theory
(Mishra and Sreeram, 2000). Both theoretical (Misawa, 1999) and experimental
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Fig. 4. The specific heat capacity per unit volumeCν/Ä for normal liquid
helium-3 as a function of temperature (T).

(Masashi and Setsuo, 2000) studies of3He fluid films have shown that the heat
capacity of these systems vary asC(T) = γ0T − γ2T2 at low temperatures, where
γ0 andγ2 are constants. Figure 5 shows the entropy of normal liquid helium-3,
which has almost the same temperature dependence as the specific heat capacity.

5. CONCLUSION

The SFA has been used to study normal liquid3He—as an archetype of neutral
strongly-interacting many-fermionic systems—for the first time. It has been found
that the SFA is valid for this system only at temperaturesT ≤ 0.25 K. At the
same time, however, no critical phenomena—including the superfluid transitions
for T ≤ 2.7 mK—could be predicted within the presentquadratic fluctuation
approximation. To predict such critical phenomena higher orders of fluctuations
must be considered. The basic achievements of this paper are, then (1) the full
derivation of the SFA, for the first time, for neutral many-fermionic systems, and
(2) the calculation of the thermodynamic properties of the strongly-interacting
normal liquid helium-3 at temperatures≤0.25 K.
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Fig. 5. The entropy per unit volumeS/Ä for normal liquid helium-3 as a function
of temperature (T).
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